Owlglass

Neural Networks

Neural Networks

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

// Simple nn that can learn XOR



double sigmoid(double x) {return 1 / (1 + exp(-x)); }
double dSigmoid(double x) {return x * (1-x); }

double init_weights(){return ((double)rand()) / ((double)RAND_MAX); }


void shuffle(int *array, size_t n){

    if (n > 1){
        size_t i;
        for (i = 0; i < n -1; i++){
                size_t j = i + rand() / (RAND_MAX / (n - i) + 1);
                int t = array[j];
                array[j] = array[i];
                array[i] = t;
            }
        }
    }

#define numInputs 2
#define numHiddenNodes 2
#define numOutputs 1
#define numTrainingSets 4

int main(void){

    const double lr = 0.1f;

    double hiddenLayer[numHiddenNodes];
    double outputLayer[numOutputs];

    double hiddenLayerBias[numHiddenNodes];
    double outputLayerBias[numOutputs];


    double hiddenWeights[numInputs][numHiddenNodes];
    double outputWeights[numHiddenNodes][numOutputs];


    double training_inputs[numTrainingSets][numInputs] = {{0.0f,0.0f},{1.0f,0.0f},{0.0f,1.0f},{1.0f},{1.0f}};
    double training_outputs[numTrainingSets][numOutputs] = {{0.0f},{1.0f},{1.0f},{0.0f}};







    }